Pronunciados en la procesión del baile de San Roque en Calamocha en el año 2001


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Pronunciados en la procesión del baile de San Roque en Calamocha en el año 2001"

Transcripción

1 R e s u m e d e l o s D I C H O S Prouciados e la procesió del baile de Sa Roque e Calamocha e el año 2001 Sa Roque e el Arrabal (Foto cocurso Peña la Uió) 155 Agosto 2002 CUADERNOS 15

2

3 Igacio Quílez Salas Glorioso patró Sa Roque: U pedacito de cielo cayó del lejao oriete co su carita de sol co su boquita soriete. Aquí te preseto Roque al más jove bailador es uestra pequeña Alicia que dice que ya es mayor. Ella que vio de Chia a recibir uestro amor os lo ha devuelto co creces y os llea de emoció. Nos ilumia la vida co la chispa de su voz co sus ojitos alegres co su tiero corazó. Alicia tiee dos años pero ya es el sol de casa que a todos os trae loquicos desde que ella se levata. Mira co qué gracia baila y mira co qué salero sólo co dos primaveras y baila como el primero. Y quiero daros las gracias por la acogida y amor a los abuelos y tata a todos, de corazó. Gracias a tíos y primos y amigos e geeral a todos quiero decir que mi familia es geial. Sa Roque cuídala mucho y vela siempre por ella que uca le pase ada i pierda la buea estrella. U muá muy grade te mada su maera es de querer que más clara y más sicera o puede dejar de ser. Sa Coque, como te llama daósle tu bedició y que siga ta coteta para ser tu bailador Co cariño para Alicia de papá y mamá 157 Agosto 2002 CUADERNOS 15

4 Victoriao Lázaro Uos hombres, hoy abuelos, levataro ua peña, que llamaro de la Uió esos era sus ahelos! Uió al pueblo e ua piña y alcazó gra espledor. Fuero pasado los años la cosa, degeeró y aquella eorme roca, de su pedestal cayó. Hoy al fial del mileio, los hijos de aquellos hombres la pretede levatar, co mucho acierto yo creo. Pieso... lo coseguirá! Sólo ua cosa sugiero, si la quiere aceptar, y es que, al termiar la oche, os retire el bu, bu y os deje descasar. No hace falta tato ruido, pa eteraros de que está, basta co hacerlo bie y el Bakalao... pa cear! Dicho prouciado e la procesió del año 1999 y publicado e Cuaderos 13, co autor erróeo, quede co su ueva publicació la rectificació hecha. 158 CUADERNOS 15 Agosto 2002

5 Ágel Tilo Licecia te pido Roque para poderme expresar y a todas autoridades poderles felicitar y al director por supuesto; por el gesto que ha teido comprarle ropa a la bada pa vestir todos igual. La image que dimos ates o era propia del lugar i villa i Calamocha i bada muicipal. Ya era hora señores de Ayutamieto que ua vez se decidiera comprarle ropa a la bada. Míralos que majos va todos co su corbatica y el traje de desfilar a ver si esto les aima y acude más a tocar. A ver si cala e la gete y les etra la afició se reueva la platilla pa bie de la població. Más de 70 cumplidos alguos de los que vamos otros e la puerta estamos hace falta gete ueva pa ver si os liceciamos. Los profesores se esmera de dar clases e la escuela más esto me suea a mí que ya teemos catera. Hay que iculcar a los chicos corales, teatros, y musicales, co dazas y otras actividades pa que esté etreteidos y sacarles de otros pozos e que alguos ada metidos. Bibliotecas ya las hay aquí por cierto muy buea para formar a la gete y ser culto e el mañaa. Y pa difudir todo esto y lo que se vega haciedo aquí los medios teéis si echufáis la caja tota por la tele lo veréis. El dicho que bie se dice se da por bie dicho el dicho y el que lo dice bie dicho se alegra de haberlo dicho. E España os cooce por el frío que pasamos e cuato llega el iviero Calamocha e primer plao. Compoete de la bada como Eloy le coocemos su pueblo atal Used aquí le teemos siempre ta fresco como u clavel. Tambié os trae a sus ietos so digos de admiració madrugar desde su pueblo para tocar uestro dace e tu sata procesió. 159 Agosto 2002 CUADERNOS 15

6 M.ª Isabel Leó Martí Casco viejo e Calamocha la Morería y la Ilarza morada de cañameros que sogas elaboraba. Tambié había dos horos oche y día trabajaba para cocer ricos paes que las mujeres masaba. Los caletaba co leña leña de uestras carrascas que hacía que e el ambiete aroma sao dejara. Los vecios, e verao, a la fresca se bajaba, ellas zurcía peduques, halago ellos preparaba. Etre tato los chiquillos, todo el barrio alborotaba, co el churro, la gallola los pitoes o las chapas. Igual que todo ha cambiado calle y casas remozadas mas sigue siedo especiales, la Morería y la Ilarza. Feliz calle cuyas getes, so algo ta especial que hermaa todo su esfuerzo pa poderla egalaar. Ayer día de la Virge de gra gala se vistió y al paso de la Patroa hasta ua alfombra tedió. Desde el cielo las estrellas hasta su suelo bajaro y tras pasar la Señora, de uevo allá se colgaro. Ehorabuea vecios por tata coquetería, pues por bella y salerosa vuestra calle es Morería. Esto o es ya ua costumbre, ha llegado a tradició el acudir a esta casa tras tu Sata procesió. Bailadores, el del micro, y tambié el de la vara dicheros y acompañates, 160 CUADERNOS 15 Agosto 2002

7 M.ª Igacio Isabel Quílez Leó Salas Martí aquí todo el mudo para. E la mesa os espera, agua fresca co aís, bueas pastas, retacía... y lo que quieras pedir. Cometamos icidetes de toda la procesió discutimos y reímos, sólo existe bue humor. Y cuado ya os marchamos o se suele agradecer, sólo dices Hasta otro año! Agelita y Rafael. o advirtiese su desgracia. Hoy quiero pararte aquí, mirado yo, hacia su casa, porque quiero recordar, al bue Jesús Blasco Salas. Bue marido, mejor padre, e el trabajo, si tacha, amigo de sus amigos, jamás volvía la cara. Las calles de Calamocha, desde el casio a su casa, recordará sus paseos jorada tras de jorada. Luchó, como u caballero, si bajar jamás la cara, cotra el mal que poco a poco, la vida le destrozaba. Pero a adie etristecía, y las bromas aceptaba haciedo que sus amigos, 161 Agosto 2002 CUADERNOS 15

8 M.ª Igacio Isabel Quílez Leó Salas Martí Por eso, yo desde aquí, bajo tu Sata peaa, le dedico este homeaje, así, mirado a su casa. Fue durate muchos años, acreditado dichero, siempre bajo tu peaa, co emoció, co esmero. Todos lo echamos e falta, mucho más los bailadores, pues durate muchos años, les freaba los sudores. Pero o se fue del todo, cuado subes y te baja, el bue Pablo va cotigo de abaderado e la bada. U día le preguté: Por qué o te acompañaba?, y me dio varias razoes, que me hiciero que callara: Es ta grade mi emoció cuado le miro a la cara, que o me sale la voz, y los ojos se me empaña. So motivos i Sa Roque, que cualquiera respetara, pues fue u dichero de pro, y ahora milita e la bada. No sé de quié partiría, pero sé que fue geial, y creo que a todo el mudo, le he debido de agradar. E el programa de fiestas, os pudimos remotar, a las fiestas de uos años, que ta lejaos está. Cuál sería mi sorpresa, el año 42, la bada de Eciacorba, ya estaba e la procesió. Yo pesaba que el que fuera, debajo de la peaa, era porque o se pare, cuado bie os vega e gaa. Mas o es así amigos míos, es segú la tradició, está más cerca del Sato el que más años bailó. Auque o baile, bie sopla, y bie que sabe tocar, el ir bajo la peaa, se lo ha sabido gaar. Año tras año bue Sato, miles de gracias te di, pues era casi u milagro, teer a los cuatro aquí. Pero e el uevo mileio, la fortua se trucó, llegada la primavera, 162 CUADERNOS 15 Agosto 2002

Pronunciados en la procesión del baile de San Roque en Calamocha en el año 2002

Pronunciados en la procesión del baile de San Roque en Calamocha en el año 2002 R e s u m e d e l o s D I C H O S Prouciados e la procesió del baile de Sa Roque e Calamocha e el año 2002 139 Agosto 2003 CUADERNOS 16 Pilar Camí Leó Glorioso patró Sa Roque Vego a poerme a tus pies

Más detalles

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5 UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

RAFAELA MARIANA FURIASSE

RAFAELA MARIANA FURIASSE RAFAELA MARIANA FURIASSE 1 Los kilos me pesan. No tanto como me pesan las miradas. Me llamo Rafaela Rivera y tengo 16 años. No me veo redonda pero muy poco puedo parecerme a esas modelos de la tele. Me

Más detalles

+ + + = 6 no parece ayudarnos a comprender cómo llegar a conjeturar esta relación. Intentamos acá una aproximación geométrica.

+ + + = 6 no parece ayudarnos a comprender cómo llegar a conjeturar esta relación. Intentamos acá una aproximación geométrica. http://www.ricomatematico.com La fórmula para la suma de los cuadrados de los primeros úmeros aturales obteida visualmete Mario Augusto Buge Uiversidad de Bueos AIres Ciclo Básico Comú Departameto de Matemática

Más detalles

Pronunciados en la procesión del baile de San Roque en Calamocha en el año 2000

Pronunciados en la procesión del baile de San Roque en Calamocha en el año 2000 R e s u m e d e l o s D I C H O S Prouciados e la procesió del baile de Sa Roque e Calamocha e el año 2000 Foto cedida por la familia Casamayor-Sebastiá 109 Fracisco Casamayor Sebastiá Cómo estará la provicia?

Más detalles

el curso escolar 2003-2004 ha

el curso escolar 2003-2004 ha EL FORO Y LA MOVILIDAD CAMINO AL COLE el curso escolar 2003-2004 ha estado lleo de importates ovedades para el Foro Escolar Ambietal. Este grupo de iños y iñas so ua parte crucial del Programa, como vículo

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

3. Las medidas de centralización

3. Las medidas de centralización FUOC XP00/71004/00017 21 Las medidas de cetralizació 3. Las medidas de cetralizació La mediaa y la media aritmética Los diagramas de tallos y hojas y los histogramas proporcioa ua descripció geeral de

Más detalles

TP Final Constanza Tarallo Publicidad I

TP Final Constanza Tarallo Publicidad I TP Fial Costaza Tarallo Publicidad I Cátedra: prof. Marisa García Nueva Yerba Taragui para Niños Cotexto - Mercado Competecia: Uió (auque es de la misma empresa) La Merced (Premium) Amada Nobleza Gaucha

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

Polarización de una onda

Polarización de una onda Polarizació La luz atural La luz se geera por u dipolo (ua carga eléctrica) que vibra a cierta frecuecia y por tato geera u campo eléctrico. ste campo implica, a su vez, el correspodiete campo magético

Más detalles

MATEMÁTICAS Y CULTURA B O L E T Í N No. 259 COORDINACIÓN DE MATEMÁTICAS DUERME BIEN Y ACERTARÁS

MATEMÁTICAS Y CULTURA B O L E T Í N No. 259 COORDINACIÓN DE MATEMÁTICAS DUERME BIEN Y ACERTARÁS MATEMÁTICAS Y CULTURA B O L E T Í N.08.009 No. 9 COORDINACIÓN DE MATEMÁTICAS CULTURA DUERME BIEN Y ACERTARÁS CULTURA Si reflexioamos u poco, y observamos a uestro alrededor, os damos cueta que e la actualidad

Más detalles

Abel Martín LAS FRACCIONES. - Las fracciones como parte de un todo - Egipto les espera

Abel Martín LAS FRACCIONES. - Las fracciones como parte de un todo - Egipto les espera LAS FRACCIONES - Las fraccioes como parte de u todo - Nuestros amigos prueba su máquia del tiempo. Egipto les espera Despegamos! E la evolució del pesamieto humao, 000 años a. C., los egipcios comieza

Más detalles

www.derechoynegocios.net Edición # 53 issn : 2075-6631 Lic. Luis Barahona

www.derechoynegocios.net Edición # 53 issn : 2075-6631 Lic. Luis Barahona Edició # 53 EL SALVADOR iss : 2075-6631 Lic. Luis Barahoa Destacado abogado acioal y regioal e el área del derecho tributario. Co más de 20 años de recorrido profesioal. Socio de la firma Arias & Muñoz.

Más detalles

Sucesiones (corrección)

Sucesiones (corrección) Sucesioes (correcció). La suma de los tres primeros térmios de ua proresió aritmética es y la diferecia es 6. Calcula el primer térmio. =a a a =a (a d)(a d )= a d= a 6 a = 48 a =. Halla la suma de todos

Más detalles

ANEXO 2 INTERES COMPUESTO

ANEXO 2 INTERES COMPUESTO ANEXO 2 INTERES COMPUESTO EJERCICIOS VARIOS: 1. Adrés y Silvaa acaba de teer a su primer hijo. Es ua iña llamada Luciaa. Adrés ese mismo día abre ua cueta para Luciaa co la catidad de $3 000,000.00. Qué

Más detalles

El Palacio Nacional fue sede de la primera Cámara de Diputados.

El Palacio Nacional fue sede de la primera Cámara de Diputados. La Plaza de la Costitució ha teido otros ombres oficiales, icluyedo Plaza de Armas, Plaza Pricipal, Plaza Mayor y Plaza del Palacio. Recibió su ombre actual durate el virreiato, e 1813, porque fue allí

Más detalles

Taller de prevención de violencia de género y creación audiovisual IES Humanes Abril 2013 Humanes de Madrid

Taller de prevención de violencia de género y creación audiovisual IES Humanes Abril 2013 Humanes de Madrid GUIÓN DEL CORTOMETRAJE: TODO EMPIEZA EN CASA SEC 1_ COCINA_INTERIOR_DIA La familia Rodríguez desayuna tranquilamente como una mañana más. TERESA (la madre) termina de preparar tostadas, mientras, y su

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: [email protected]

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: [email protected] Zeó de Elea (90 A.C) plateó la

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal)

5.6 Serie de Fourier de funciones pares e impares (desarrollo cosenoidal o senoidal) 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) 46 5.6 Serie de Fourier de fucioes pares e impares (desarrollo coseoidal o seoidal) Fucioes Pares e Impares E el maejo de

Más detalles

2 FUNDAMENTOS DE PROBABILIDAD

2 FUNDAMENTOS DE PROBABILIDAD 2 FUNDAMENTOS DE PROBABILIDAD T al vez el estudio de la probabilidad toma setido cuado se percibe y se acepta la existecia de la aleatoriedad e diversos aspectos de la vida diaria. Si embargo, si cosideramos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p.

1. Demuestra que si p es un natural y p es compuesto, entonces existe un divisor m de p con 1 < m p. Divisibilidad Matemática discreta Dados dos úmeros aturales a y b, escribiremos a b y leeremos a divide a b si existe u c N tal que ac = b. E este caso, decimos que a es u divisor de b o que b es divisible

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

Combinatoria y definiciones básicas de probabilidad

Combinatoria y definiciones básicas de probabilidad Combiatoria y defiicioes básicas de probabilidad Defiicioes de probabilidad Probabilidad como ituició Probabilidad como la razó de resultados favorables Probabilidad como medida de la frecuecia de ocurrecia

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

LAS MUESTRAS ESTADÍSTICAS

LAS MUESTRAS ESTADÍSTICAS 11 LAS MUESTRAS ESTADÍSTICAS Págia 266 1. Ua gaadería tiee 3 000 vacas. Se quiere extraer ua muestra de 120. Explica cómo se obtiee la muestra: a) Mediate muestreo aleatorio simple. b) Mediate muestreo

Más detalles

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre:

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre: IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. º ESO A Nombre: Evaluació: Primera. Feca: 0 de diciembre de 00 NOTA Ejercicio º.- Aplica el orde de prioridad de las operacioes para calcular: 64 : 5

Más detalles

Series de números reales

Series de números reales Series de úmeros reales Covergecia de series uméricas Ejercicio. series: a) ) + b) 3 3 ) c) +) Aplicar el criterio de la raíz para estudiar la posible covergecia de las siguietes Solució. a) Aplicamos

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Por frecuencia Por orden alfabético

Por frecuencia Por orden alfabético Las 1000 palabras más frecuentes del castellano Datos de la RAE (Real Academia de la Lengua Española) organizados por Dictados para Primaria () En la segunda columna se encuentras las palabras ordenadas

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

TEMA 10: La programación lineal como instrumento para la toma de decisiones de inversión

TEMA 10: La programación lineal como instrumento para la toma de decisiones de inversión Itroducció a las Fiazas 3º Curso de Direcció y Admiistració de Empresas TEMA 0: La programació lieal como istrumeto para la toma de decisioes de iversió E la empresa existe ua serie de restriccioes (recursos,

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

Contrastes de hipótesis

Contrastes de hipótesis Cotrastes de hipótesis Ejercicio º 1.- E u determiado istituto asegura que las otas obteidas por sus alumos e las pruebas de acceso a la Uiversidad tiee ua media igual o superior a 7 putos. Pero la media

Más detalles

UNIDAD 1 PROCESOS INFINITOS Y LA NOCIÓN DE LÍMITE

UNIDAD 1 PROCESOS INFINITOS Y LA NOCIÓN DE LÍMITE UNIDAD PROCESOS INFINITOS Y LA NOCIÓN DE LÍMITE Propósitos. Explorar diversos problemas que ivolucre procesos ifiitos a través de la maipulació tabular, gráfica y simbólica para propiciar u acercamieto

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

No obstante, cuando intentamos hacer lo mismo con los números racionales y reales vemos que. con como lo hicimos con. es diferente de los conjuntos

No obstante, cuando intentamos hacer lo mismo con los números racionales y reales vemos que. con como lo hicimos con. es diferente de los conjuntos Departameto de Matemáticas Guía Iducció Matemática Objetivos: Eteder el pricipio del bue orde Realizar demostracioes matemáticas por medio del pricipio de iducció matemática El pricipio del bue orde: iducció

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

MATEMÁTICAS Y CULTURA B O L E T Í N No. 291 COORDINACIÓN DE MATEMÁTICAS BIENVENIDA O DESPEDIDA?

MATEMÁTICAS Y CULTURA B O L E T Í N No. 291 COORDINACIÓN DE MATEMÁTICAS BIENVENIDA O DESPEDIDA? MATEMÁTICAS Y CULTURA B O L E T Í N 23.08.203 No. 29 COORDINACIÓN DE MATEMÁTICAS BIENVENIDA BIENVENIDA O DESPEDIDA? DESPEDIDA Se iicia u uevo ciclo e la vida de uestra Facultad. Llega a uestras aulas uevos

Más detalles

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor [email protected] MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

Ultima fecha de actualización

Ultima fecha de actualización Fórmulas usadas e el cálculo de iterés de la Cueta Ahorro a FORMULAS: 1 Fórmula Pricipal (a).- Actualmete la CMAC PIURA SAC usa la fórmula (a) para el cálculo de itereses de la Cueta Ahorro a Plazo Fijo

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA

ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA ESTIMACIÓN PUNTUAL Y ESTIMACIÓN POR INTERVALOS DE CONFIANZA Autores: Ágel A. Jua ([email protected]), Máimo Sedao ([email protected]), Alicia Vila ([email protected]). ESQUEMA DE CONTENIDOS Defiició Propiedades

Más detalles

Tratamiento para la apnea del sueño. Revisión de la investigación para adultos

Tratamiento para la apnea del sueño. Revisión de la investigación para adultos Tratamieto para la apea del sueño Revisió de la ivestigació para adultos Es apropiada si: U médico le dijo que tiee "apea obstructiva del sueño (OSA por su sigla e iglés) de grado leve, moderata o grave.

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta.

A = 1. Demuestra que P (1) es cierta. 2. Demuestra que si P (h) es cierta, entonces P (h + 1) es cierta. . POTENCIAS DE MATRICES CUADRADAS E este capítulo vamos a tratar de expoer distitas técicas para hallar las potecias aturales de matrices cuadradas. Esta cuestió es de gra importacia y tiee muchas aplicacioes

Más detalles

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ 06 5.8 Leyedo la salida de u programa estadístico Cada programa estadístico preseta los resultados de la regresió e forma diferete, pero la mayoría provee la misma iformació básica. La tabla muestra la

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Calendario de Adviento 2015

Calendario de Adviento 2015 Calendario de Adviento 2015 Te proponemos un Calendario para animar al compromiso diario durante el adviento del año 2015 (aunque podrás utilizarlo moviendo los días todos los años que quieras). Los materiales

Más detalles

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor.

5. Aproximación de funciones: polinomios de Taylor y teorema de Taylor. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Fucioes y derivada. 5. Aproimació de fucioes: poliomios de Taylor y teorema de Taylor. Alguas veces podemos aproimar fucioes complicadas mediate otras

Más detalles

Métodos estadísticos y numéricos Estimación por Intervalos de confianza 1 PROBLEMAS RESUELTOS DE ESTIMACIÓN POR INTERVALOS DE CONFIANZA

Métodos estadísticos y numéricos Estimación por Intervalos de confianza 1 PROBLEMAS RESUELTOS DE ESTIMACIÓN POR INTERVALOS DE CONFIANZA Métodos estadísticos y uméricos Estimació por Itervalos de cofiaa PROBLEMA REUELTO DE ETIMACIÓN POR INTERVALO DE CONFIANZA U adador obtiee los siguietes tiempos, e miutos, e 0 pruebas croometradas por

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

PASOS PARA CONTROLAR LA DIABETES DE POR VIDA

PASOS PARA CONTROLAR LA DIABETES DE POR VIDA 4 PASOS PARA CONTROLAR LA DIABETES DE POR VIDA 1 1 Ídice Itroducció... 1 Paso 1: Apreda sobre la diabetes... 3 Paso 2: Cuide bie los factores clave de la diabetes... 6 Paso 3: Cotrole su diabetes... 8

Más detalles

Los zapaticos de rosa

Los zapaticos de rosa José Martí Los zapaticos de rosa Hay sol bueno y mar de espuma, y arena fina, y Pilar quiere salir a estrenar su sombrerito de pluma. -«Vaya la niña divina!»5 dice el padre, y le da un beso. -«Vaya mi

Más detalles

PROBABILIDAD Y ESTADÍSTICA MAT-041 GUIA Nº2 PROBABILIDADES

PROBABILIDAD Y ESTADÍSTICA MAT-041 GUIA Nº2 PROBABILIDADES UNIVERSIDAD TÉCNICA FEDERICO SANTA MARIA DEPARTAMENTO DE MATEMÁTICA PROBABILIDAD Y ESTADÍSTICA MAT-041 GUIA Nº2 PROBABILIDADES Profesor: Sr. Patricio Videla Jiméez. 1. Ua empresa fabricate de televisores

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

Píldora 1. Presentación de la primera misión de la Agencia de Supervoluntarios

Píldora 1. Presentación de la primera misión de la Agencia de Supervoluntarios Píldora 1. Presentación de la primera misión de la Agencia de Supervoluntarios Toni Bienvenidas y bienvenidos a la Superagencia de Voluntarios. Soy Toni, su director. Llevamos toda la noche recibiendo

Más detalles

Series alternadas Introducción

Series alternadas Introducción Sesió 26 Series alteradas Temas Series alteradas. Covergecia absoluta y codicioal. Capacidades Coocer y aplicar el criterio para estudiar series alteradas. Coocer y aplicar el teorema de la covergecia

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

Lo que los padres necesitan saber sobre la presión arterial alta en niños. Un programa de los Institutos Nacionales de la Salud

Lo que los padres necesitan saber sobre la presión arterial alta en niños. Un programa de los Institutos Nacionales de la Salud Lo que los padres ecesita saber sobre la presió arterial alta e iños U programa de los Istitutos Nacioales de la Salud Pregutas que debe hacerle al médico sobre la presió arterial de su hijo Quévaloresdepresióarterialtieemihijo?

Más detalles

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones

UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferencia de proporciones UNIDAD III. PRUEBAS DE HIPÓTESIS 3.6 Prueba para diferecia proporcioes E alguos diseños ivestigació, el pla muestral requiere seleccioar dos muestras ipedietes, calcular las proporcioes muestrales y usar

Más detalles

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z <

Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD. X- μ. f(x) = e para - < x < Z 2. . e para - < z < Tema 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD La distribució ormal: La distribució ormal, campaa de Gauss o, curva ormal, tambié defiida por De Moivre. Características y propiedades: La siguiete fórmula

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

Grandparents. Grandchildren. Disciplinando a sus nietos

Grandparents. Grandchildren. Disciplinando a sus nietos Gradparets Raisig Gradchildre Discipliado a sus ietos Cómo les eseña a los iños a comportarse, au cuado usted o está presete? La clave es emplear ua disciplia eficaz y cosistete. Los iños so más probables

Más detalles

Ejercicios Tema 4. Estructuras de Repetición

Ejercicios Tema 4. Estructuras de Repetición Ejercicios Tema 4. Estructuras de Repetició 1. Calcular el factorial de u úmero etero itroducido por teclado. 2. Calcular de la suma y la media aritmética de N úmeros reales. Solicitar el valor de N al

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

El amplificador operacional como generador de tensión diferencial -voltaje controlado

El amplificador operacional como generador de tensión diferencial -voltaje controlado Diapositiva 1 El amplificador operacioal como geerador de tesió diferecial -voltaje cotrolado Los amplificadores operacioales so amplificadores difereciales de alto redimieto. Tiee etradas de bucle cerrado

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA DE CORRECCIÓN PRUEBA RECUPERATIVA N 2 Profesor: Hugo S. Salias. Segudo Semestre 2009 DESARROLLO

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

( ) RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN. ba 9 SEMANA 8 RELOJES = 18. ab + ba 9 = 24. x 16 x RPTA.: E

( ) RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN. ba 9 SEMANA 8 RELOJES = 18. ab + ba 9 = 24. x 16 x RPTA.: E SEMANA 8 RELOJES. Las horas trascurridas del día está represetadas por u úmero de dos cifras y el exceso de dicho úmero co las cifras ivertidas sobre ueve, represeta las horas que falta trascurrir. Qué

Más detalles

SUCESIONES DE NÚMEROS REALES. PROGRESIONES

SUCESIONES DE NÚMEROS REALES. PROGRESIONES www.matesxroda.et José A. Jiméez Nieto SUCESIONES DE NÚMEROS REALES. PROGRESIONES. SUCESIONES DE NÚMEROS REALES. TÉRMINO GENERAL E las siguietes figuras observa el proceso que lleva a la creació de uevos

Más detalles

TEMA 19 Cálculo de límites de sucesiones*

TEMA 19 Cálculo de límites de sucesiones* CURSO -6 TEMA 9 Cálculo de límites de sucesioes* Propiedades aritméticas de los límites de sucesioes. b tales que : a = a b = b, dode ab, R Sea las sucesioes { } a y { } Etoces podemos obteer su suma,

Más detalles

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS)

12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 12 I N F E R E N C I A E S T A D Í S T I C A II (CONTRASTE DE HIPÓTESIS) 1 Supogamos que ua variable aleatoria X sigue ua ley N(µ; =,9). A partir de ua muestra de tamaño = 1, se obtiee ua media muestral

Más detalles

PLAN DE PREVENCIÓN DE LA OBESIDAD INFANTIL DESDE LA OFICINA DE FARMACIA EN CASTILLA-LA MANCHA INFORME DE RESULTADOS

PLAN DE PREVENCIÓN DE LA OBESIDAD INFANTIL DESDE LA OFICINA DE FARMACIA EN CASTILLA-LA MANCHA INFORME DE RESULTADOS PLAN DE PREVENCIÓN DE LA OBESIDAD INFANTIL EN CASTILLA-LA MANCHA DESDE LA OFICINA DE FARMACIA PLAN DE PREVENCIÓN DE LA OBESIDAD INFANTIL DESDE LA OFICINA DE FARMACIA EN CASTILLA-LA MANCHA INFORME DE RESULTADOS

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

Uniones en semiconductores

Uniones en semiconductores Uioes e semicoductores Comuicacioes: fibras ópticas Itroducció E la actualidad vivimos e u mudo lleo de iformació, que ya es parte iseparable de uestra cultura. La televisió, la telefoía móvil y las comuicacioes

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

Notas de Combinatoria Daniel Penazzi

Notas de Combinatoria Daniel Penazzi Notas de Combiatoria Daiel Peazzi El Pricipio de Adició: Si se puede realizar ua acció A de formas distitas, y se puede realizar ua acció B de m formas distitas, y A y B so excluyetes, etoces el úmero

Más detalles

Guía: Propiedades de las potencias SGUIC3M020MT311-A17V1

Guía: Propiedades de las potencias SGUIC3M020MT311-A17V1 Guía: Propiedades de las potecias SGUICM00MT11-A17V1 TABLA DE CORRECCIÓN PROPIEDADES DE LAS POTENCIAS Ítem Alterativa Dificultad Estimada 1 C Media D Media D Media 4 B Media 5 D Compresió Media 6 E Compresió

Más detalles

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p :

Para construir intervalos de confianza recordemos la distribución muestral de la proporción muestral $p : Itervalos de Cofiaza para ua proporció Cuado hacemos u test de hipótesis decidimos sobre u valor hipotético del parámetro. Qué proporció de mujeres espera compartir las tareas de la casa co su pareja?

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

Gradiente, divergencia y rotacional

Gradiente, divergencia y rotacional Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para

Más detalles

la isla buceo :Koh Tao,

la isla buceo :Koh Tao, Fiel a su cita, el tiburó ballea acude. :Koh Tao, la isla buceo Apea Total e Thailadia Viedo las fotos que acompaña este texto, etedemos por qué u bilbaío deja su País Vasco atal y se va a vivir a este

Más detalles